
Demand-driven Alias Analysis Implementation Based on Open64

Xiaomi An

(annyur@gmail.com)

Abstract

In this paper, an implementation of a

demand-driven alias analysis [7] in Open64 is

presented. In the algorithm, a program expression

graph is constructed based on all the expressions

and assignments in the program, and the memory

alias problem is formulated as a CFL-reachability

problem. To deal with field accesses of structs

which are common in multi-media applications, a

field-sensitive extension of the original algorithm

is also implemented. Currently, the field-sensitivity

assumes ansi-compliant programs.

By evaluating the implementation using

some spec2000 programs, we found that the

scalability of the original algorithm is not able to

give enough precision in a reasonable compile

time. To improve the scalability, a new one-level

flow demand driven algorithm is developed, in

which the hierarchical state machine is simplified

by making machine M transitive while still

keeping machine V non-transitive. The algorithm

can achieve the same precision as Das’s algorithm

[3], but uses a demand driven approach.

Although the new one-level flow algorithm

lost some of the precision for making machine M

transitive, it can finish analysis of more queries for

a given reasonable compile time and give more

definite alias results. In other words, it can give

better precision than the original algorithm and is

more practical for product compiler. From

experiment results, we can see that the algorithm

can finish about half of the queries in a short

compile time, and give much more “not aliased”

results than the original algorithm.

1. Introduction

The set-union based alias classification [1] in

Open64 has been used for many years, and played

an important role in memory disambiguation as

well as SSA based IR building in the global

optimizer. The precision of alias analysis directly

determine the effect of all the optimizations based

on it, such as partial redundancy, instruction

scheduling, etc. Since then more program analysis

techniques have been developed, such as software

security static check, data race check for

multi-threaded application. The effectiveness of

these analysis techniques all heavily rely on the

precision of alias analysis.

Set-inclusion based point-to analysis

algorithm was developed by Andersen in 1994[2],

known for its better precision with O(N3)

complexity. This approach has been used by many

modern compilers to improve the precision of their

alias analysis. At the same time, plenty of new

ideas have been developed and published to

improve the scalability of the set-inclusion based

algorithm.

These new methods tried to solve the

scalability issue from different aspects, and can be

summarized into the following three kinds:

1) Partial set-inclusion approach: Das

presented a low cost algorithm which lies between

Steenguaard’s algorithm and Andersen’s algorithm

[3]. The algorithm uses a restricted form of

subtyping to avoid unification of symbols at the

top levels of pointer chains in the points-to graph,

while using unification elsewhere in the graph.

2) Constraint graph simplification approach:

Manuel showed that online elimination of cyclic

constraints can make implementation more

scalable [4]. Similarly, Atanas Rountev developed

an offline variable substitution algorithm which

reduced the cost of Andersen’s points-to analysis

substantially [5].

3) Demand-driven approach: Some

researchers noticed that some of the efforts spend

in points-to or alias analysis are not effective, and

developed demand-driven approaches to do

points-to analysis or alias analysis just on demand.

For example, Heintz and Tardieu redesigned

Andersen’s deduction rules by adding conditions

to the rules, so that only necessary analysis is

derived for querying [6]. Xin Zheng and Rugina

presented a demand-driven alias analysis in 2008

[7]. In their algorithm, the computation of alias

queries was formulated as CFL(context free

language)-reachability over graph representation

of assignments and pointer dereference relations,

and they claimed that the demand-driven alias

analysis will do less work than demand-driven

points-to analysis.

In this paper, we try to enhance the alias

analysis of Open64 by incorporating a

demand-driven alias analysis which is based on

Andersen’s set-inclusion based algorithm. To

further improve the scalability, we simplified the

hierarchical state machine and developed a

one-level flow demand-driven algorithm.

The reason we choose a demand driven

algorithm is in three folds: 1) it need not calculate

all the alias relationship at a time, but do necessary

analysis on demand; 2) It needs less memory space

since it need not save the alias data for the whole

program, some of which may not be used at all. 3)

In case only partial information is available,

demand driven algorithm can recover the needed

info naturally. Currently, the implementation is

used in intra-procedural analysis, and we hope to

extend and incorporate it into inter-procedural

analysis in the future.

2. Demand-driven alias analysis via

CFL_Reachability

In this section, we give a brief introduction of

how the memory alias problem can be formalized

into a CFL-Reachability problem [7].

The C-like program which manipulates

pointers can be represented by a Program

Expression Graph (PEG). The PEG is a graph

representation of all expressions and assignments

(both explicitly and implicitly) in the program.

The nodes of the graph represent program

expressions (including symbols) and the edges are

of two kinds:

i) Dereference edges (D): for each dereference

*e, there is a D -edge from e to *e, and at the

same time, there is a D -edge from *e to e.

ii) Assignment edges (A): for each assignment

e1 = e2, there is a A -edge from e2 to e1, and

at the same time, an A -edge from e1 to e2.

Unlike traditional alias analysis algorithm, two

kinds of aliases are defined here:

i) Memory aliases: two dereference expressions

are memory aliased if they might access the

same memory location, i.e. their addresses are

value aliased.

ii) Value aliases: two expressions are value

aliased if they might evaluate to the same

pointer value.

The may-alias problem can be formulated with a

context-free grammar shown as the following.

EBNF notation is used to represent the grammar,

where “?” indicates an optional term, “*” is the

Kleene star operator. Symbol D , D , A , A

are terminals and denote D -edge, D -edge,

A -edge and A -edge separately. F and F are

non-terminals, denoting value flows.

Memory aliases: VDDM ::

Value aliases: FMFV ?::
Flows of values: *?)(:: AMF  ,

*)?(:: AMF 

In the above grammar, VDDM :: means

two memory accesses *e1, *e2 are aliased, if the

path from *e1 to *e2 consists of a D -edge from

*e1 to e1, a value alias edge V(e1, e2), and a

D -edge from e2 to *e2. FMFV ?:: means

two expressions e1 and e2 are value aliased if there

exist two expressions e1’ and e2’ which are

memory aliased, i.e. M(e1’, e2’), and whose values

flow into e1 and e2 respectively, i.e. F(e1’, e1) and

F(e2’, e2).

*?)(:: AMF  and *)?(:: AMF  mean

that flows of values are due to sequences of

assignments and memory aliases. If we eliminate

non-terminals, F and F , we can get:

Memory aliases: VDDM ::

Value aliases: *?)?(*)?(:: AMMAMV 

Thus the memory alias relation and value

alias relation can be represented by hierarchical

state machines. In figure 1, machine M recognizes

memory aliases, machine V recognizes value

aliases.

3. Constraint generation and PEG building

Program analysis using constraints is usually

divided into two parts: constraint generation and

constraint resolution. Constraint generation

produces constraints from a program text, gives a

declarative specification of the desired information

about the program. According to [8], the soundness

of analysis can be proven solely on the basis of the

constraints generated. So the constraint generation

is very critical for both the correctness and

precision of set constraints based alias analysis.

As we have mentioned in section 2, in the

demand-driven algorithm discussed in this paper,

program expression graph (PEG) instead of the

constraint graph is used to represent program info,

where the both the assignment edges and

dereference edges should be added into PEG. Table

1 shows the basic rules of PEG building for

intra-procedural analysis for C language.

In table 1, const means constant, var means

variable, x, y, f, r represents expressions (including

variables, used as operand, result, formal,

actual, …), n(e) represents the node in PEG

representing expression e. We have two special

nodes in PEG, n_g_ptr, and n_g_obj, representing

global pointer and global object separately and

n_g_ptr always point to n_g_obj.

Constraints built from these rules will have

much redundancy, since we are not able to identify

pointer from the type system of WHIRL. To avoid

redundant constraint generation, we apply some

tricks to recognize pointer calculation which are

already used in current alias analysis in Open64.

For example, 1) Results of operations like SQRT,

MPY, EQ … can never be value of pointer. 2) If

the result type of an operation is pointer type, the

result must be value of a pointer. These features

Figure 1: hierarchical state machine

(b) Machine V

(a) Machine M

can be propagated along WHIRL tree, so as to

avoid more redundant constraints to be generated.

CFL formulation of alias analysis can be

extended to be field-sensitive by the following

grammar, where fi denotes “field edge”. The field

edge fi is an edge in PEG from the node

representing the address of a structure to the node

representing the address of field i in the structure.

Memory aliases: VDDM ::

Value aliases: ?||:: MVffVFFV ii

Flows of values: *?)(:: AMF 

*)?(:: AMF 

The grammar reflects that two field accesses

are aliased if and only if they access the same field

(i.e. the structure type and the field id should be

the same) and their bases are value aliased. But in

reality, the grammar cannot directly apply to

ansi-incompliant C programs, where the type

casting between pointers of different structure

types may make the analysis failed. A feasible way

is to apply the similar method presented in [9], i.e.

to check whether type-casting operation appears

and collapses all the related field access nodes into

one.

At present, we assume our applications are

ansi-compliant and develop the constraint

generation rules for field access, shown the table 2.

Besides F-edge, A-edge is also added between

structure address and its field address, which is

used to reflect the fact that fields always alias with

the whole structure.

Grammar PEG node PEG A-edge PEG D-edge

Const n(const) = n_g_ptr

var :: global n(var), n(&var) n(var)  n_g_ptr

n(&var)  n_g_ptr

n(var)  n(&var)

var :: formal n(var) n(var)  n_g_ptr

var :: Reg/Auto n(var)

&x n(x), n(&x) n(x)  n(&x)

*x n(x), n(*x) n(*x)  n(x)

x = y: n(x), n(y) n(x) n(y)

p++/ p-- n(p)

x = op(y 1 …y n) n(x), n(y1), …, n(yn) n(x)  n(yi), i = 1 … n

x = allocate(y) n(x), n(allocate),

n(&(allocate))

n(x)  n(&(allocate)) n(allocate) 

n(&(allocate))

fun(f1 … fn)  (r1 …

rm) S*

n(fi), i = 1 … n n(fi)  n_g_ptr,

i = 1 … n

x1 … xm =

p(y1 … yn),

assume call-by-

value rule here

n(xi), i = 1 … m

n(yi), i = 1 … n

n(*yi), i = 1 … n

n(xi)  n_g_ptr,

i = 1 … m

n(*yi)  n_g_ptr,

i = 1 … n

n(*yi)  n(yi)

i = 1 … n

Table1: constraint generation and PEG building rules for C grammar

Grammar PEG node PEG F-edge PEG A-edge PEG D-edge

x.f n(x), n(&x),

n(&x+ofst(fi)),

n(*(&x+ofst(fi))),

n(&x+ofst(fi)) 

n(&x)

n(&x+ofst(fi)) 

n(&x)

n (x)  n(&x)

n(&x+ofst(fi)) 

n(*(&x+ofst(fi)))

xfi n(x),

n(x+ofst(fi))

n(*(x+ofst(fi)))

n(x+ofst(fi)) 

 n(x)

n(x+ofst(fi)) 

 n(x)

N(x+ofst(fi)) 

n(*(x+ofst(fi)))

Table2: constraint generation and PEG building rules for struct field

4. Evaluation of demand-driven alias analysis

The demand-driven alias analysis (DDA)

implemented in this paper works on WHIRL, and

is applied in the same phase as alias classification

(AC) in the global optimizer. By keeping the

expression id in the POINTS_TO of each memory

operation, it can help memory disambiguation in

the same way as alias classification.

Compared the AC, the DDA has three

advantages: 1) It is based on set inclusion

algorithm; 2) The global variable accesses are not

collapsed; 3) It is field-sensitive. However, DDA

has no linear complexity and it has to give up

some of its precision to avoid too much graph

traverse time.

Compared to flow free alias analysis (FFA)

and flow sensitive analysis (FSA), the advantage

of DDA is that it keeps track of the value flow of

the whole program (or the whole procedure unit, in

case of intra-procedural analysis). The

disadvantage of DDA is that it can only supply

MAY alias info, but no MUST alias info, while the

POINTS_TO (The POINTS_TO structure in

Open64) analysis can give definite result, e.g.

whether the two memory operations access exactly

the same bytes/bits.

In this section, we will evaluate both the

precision and the scalability of DDA.

4.1 Precision evaluation

The test cases shown in table 3 include a

typical test case to compare the analysis precision

between set-union and set-inclusion based alias

analysis algorithms and some typical cases from

multi-media applications.

The analysis results of DDA, AC,

AC+FFA+FSA, and DDA+FFA+FSA are shown in

table 4. In the table, we use x~{y1, …. yn} to

represent that x alias with y1, …, yn. The analysis

results shown for DDA are got with FFA and FSA

turned off. We can see from the results that:

i) For case (1), since DDA is set-inclusion based,

it can achieve better precision than AC. Since

current DDA is flow-insensitive, it is not as

precise as FSA.

ii) For case (2), since DDA can track value flow

of the whole procedure, it is able to

disambiguate *p from *q and give better result

than FSA, which can only track part of the

value flow in the program.

iii) For case (3), since DDA is field sensitive, it

can disambiguate accesses to different fields

when ansi-compliant is assumed. In this case

FFA/FSA failed due to loss of high level struct

type info in the array.

iv) Since DDA is more precise than AC, we can

replace AC with DDA without loss of

precision.

4.2 Scalability evaluation

In this section, we evaluate the scalability of

DDA using some programs from spec2000. All the

experiments are carried out with AC, FFA and FSA

turned off. Data in table 5 illustrate the program

features and the classification of alias queries

generated during Open64 compile process.

In table 5, column 2 ~ 5 show the number of

vertices and edges in the program expression

graphs, both accumulated count and maximum

count are given. Column 6 shows the total number

of alias queries from both WOPT phase and CG

phase. In our implementation, caching is used to

save the alias analysis result after alias analysis for

each alias query. Column 7 shows the number of

queries which are satisfied by checking cached

results. Column 8 shows number of queries which

are satisfied by quick analysis, for example,

disambiguation of pseudo registers or local

variables which are not address taken. Column 9

shows the number of queries which need demand

driven analysis.

From table 5, we can see that: 1) The query

count is large in Open64; 2) Caching of analysis

results is very important. 3) Quick disambiguation

is very useful. 4) The part of queries which need

deep analysis is small, below 10% for all the cases.

But though the number of queries needing deep

analysis is small, their results will be cached and

used more by later queries. So the precise analysis

of these queries is still important.

To avoid unlimited compile time for large

programs, a K-limit approach is used, in which a

threshold K is used to control the exploration time.

The K represents the upper limit of iteration count

of the loop in the work-list based algorithm. If the

iteration count reaches K, conservative result will

be returned.

Table 6 gives the percentage of analysis

which is finished in all the demand driven analysis,

when K increases from 100 to 10000. We can see

that: When K is below 1000, most of the

explorations cannot finish. As K increases, more

analysis can give definite result. However, most

queries cannot get precise result in a reasonable

compile time, so the current implementation

doesn’t have good scalability.

We believe it may be improved in following

ways: 1) Simplify constraint graph as much as

possible. 2) Develop more rules which can help do

quick analysis. 3) Select simpler underlying

algorithm between set-inclusion and set-union,

which will be given in the next section.

Test case (1) Test case (2) Test case (3)

int foo ()

{

int **p, **q;

int *s1, *s2, *s3;

 p = &s1;

 p = &s2;

 q = &s3;

q = p;

 p = (int) malloc(100);

 q = (int) malloc(100);

 return *s1 + *s2 + *s3;

}

int a[100]，b[100];

void foo() {

int i;

int *p, *q;

 p = &a[0];

 q = &b[10];

 for (i=0;i<100;i++) {

 *p = *q;

 p ++;

 q++;

 }

}

typedef struct {

 unsigned int bits_left;

 unsigned int buffer_size;

} bitfile;

typedef struct {

 char is_leaf;

 char data[4];

} hcb_bin_quad;

hcb_bin_quad hcb[10];

void foo (bitfile *ld, int cb, int n, int b){

 for (int i=0; i<n; i++) {

 ld->bits_left += hcb[i].data[b];

 }

}

Table 3: typical test cases for alias analysis precision evaluation

Test case Memory

operation

DDA AC AC +

FFA + FSA

DDA+

FFA + FSA

Case (1) 1 S1

2 s2

3 s3

4 *p

5 *q

6 *s3

7 *s1

8 *s2

4~{1,2}

5~{1,2,3,4}

7~{6}

8~{6,7}

4~{1,2,3}

5~{1,2,3,4}

7~{6}

8~{6,7}

4~{2}

5~{2}

7~{6}

8~{6,7}

4~{2}

5~{2}

7~{6}

8~{6,7}

Case (2) 1 global_obj

2 *p

3 *q

2~{1}

3~{1}

2~{1}

3~{1,2}

2~{1, }

3~{1,2}

2~{1}

3~{1}

Case (3) 1 global_obj

2 ld->bits_left

3 hcb[i].data[b]

2~{1}

3~{1}

2~{1}

3~{1,2}

2~{1}

3~{1,2}

2~{1}

3~{1}

Table4: alias analysis results comparison

Summary of PEGs By analysis count

node count A-edge count

Test

case

Total Max total max

Query

count

By

cache quick

analysis

DDA

analysis

Swim 391 119 568 208 23081 75% 18% 7%

Mgrid 712 132 1019 247 62410 61% 36% 3%

Equake 1899 280 1761 362 98668 45% 52% 3%

Art 1749 95 1643 122 17573 27% 65% 8%

Table5: program features and alias queries classification

Test case K = 100 K = 1000 K = 5000 K = 10000

Swim 21% 21% 36% 100%

Mgrid 29% 32% 76% 100%

Equake 23% 31% 38% 45%

Art 11% 42% 79% 100%

Table6: percentage of queries finished for given K-limit

5. One-level flow demand driven analysis

In the original state machine, the machine M

is not transitive. To get better scalability, we now

make M transitive, so the four states in machine V

can be changed into two, shown in figure 2.

Based on this state machine, we can

developed a new demand driven alias analysis and

achieve the same precision as Das’s one-level flow

algorithm. It can be understood in this way: if *e1

can reach *e2 by M(*e1, *e2), and *e2 can reach

*e3 by M(*e2, *e3), then *e1 will also reach *e3

by continuously following M(*e1, *e2) and M(*e2,

*e3). That means the expressions connected by

memory alias relationship will all carry the same

value, so as to point to the same object.

Thus we can union these expressions into

one “value alias group” (i.e. these expressions

have the same value/content, though may access

different locations), then merge dereferences of

these expressions into one PEG node (i.e. same

value/content and same location). We use a special

node as representative of the value alias group,

which we call “value holder”, and then the value

flows between the nodes inside the “value alias

group” need not to be checked in future analysis,

while the value flows outside the group will only

be carried on the “value holder”. That means the

assignment edges inside the group will be deleted

while the edges between nodes inside the group

and those outside the group will be moved to lie

between the “value holder” and those outside

nodes. Since both the node count and edge count

in PEG are reduced, later analysis will be greatly

simplified.

Figure 3 gives an example of online PEG

simplification for the case (1) given in table 3,

where solid lines represent A-edges and dash lines

represent D-edges. The nodes surrounded by the

callout form a value alias group. We can see that in

the new algorithm, value alias relationship is still

exploited by reachability analysis, but when

memory alias is found, we will perform PEG

(program expression graph) simplification of the

related nodes. So the algorithm is demand driven

in two folds: 1) demand driven reachability

analysis, 2) demand driven PEG simplification.

Compared with SSA, the “value holder” here

corresponds to the phi node in SSA. The phi node

factors the value flows in and out of control flow

structure, while “value holder” factors the value

flows in and out of “value alias group”.

Figure 4 shows the detailed algorithm

description, where val_alias_g(n) means to find

the value alias group for node n, val_holder(g)

means to find the value holder node of the value

alias group g, val_holder(n) means to find the

value holder node of the value alias group that

include node n, and peg_node(e) means to find the

corresponding node in PEG for expression e.

A A

S3S1
A

MM

Figure 2: one-level flow hierarchical state machine

(a) Machine M

(b) Machine V

*s1

s1

&s1

*s2

s2

&s2

*s3

s3

&s3

*p

p

*q

q

M1 M2

&M1 &M

(a) Initial PEG

(b) PEG after memory alias of *p and s2 was found

(c) PEG after memory alias of *p and s1 was found

(d) Final PEG

*vh1

s1

&s1

s2

&s2

s3

&s3

*p

p

*q

q

vh1

M1 M2

&M1 &M
*s1 *s3

*vh1

s1

&s1

s2

&s2

s3

&s3

*p

p

*q

q

vh1

M1 M2

&M1 &M
*s3

*vh1

s1

&s1

s2

&s2

s3

&s3

*p

p

*q

q

vh1

M1 M2

&M1 &M

vh2

Figure 3: online PEG simplification

MAYALIAS (e1 : Expr, e2 : Expr)

/* initialize worklist */

w { <addr(e1), addr(e1), S1> }

while (w is not empty)

remove <n, s, c> from w

/* check if the destination has been reached */

if (peg_node(addr(e1)) == peg_node(addr(e2)))

then return true

else if (((n == addr(e1)) ^ (s == addr(e2))) ||

((n == addr(e2)) ^ (s == addr(e1))))

then return true

/* propagate information upward */

ds deref(s)

dn  deref(n)

if ((dn != null) ^ (ds!= null) ^ (dn != ds) ^

(val_alias_g (dn) != val_alias_g(ds)))

then g UNION (val_alias_g(dn), val_alias_g(ds))

 merge all the derefs of nodes in g

/* propagate reachability through value flows */

vn val_holder(n)

vs val_holder(s)

switch (c)

case S1 :

 for each m in assign_from(vn) :

PROPAGATE(w, m, vs, S1)

for each m in assign_to(fn) :

PROPAGATE(w, m, vs, S3)

case S3 :

for each m in assign_to(vn) :

 PROPAGATE(w, m, vs, S3)

/* propagate information downward */

if (n == val_holder(n))

then for each m in val_alias_g(n)

if (addr(m) != null)

 then PROPAGATE(w, addr(m), addr(m), S1)

else if (addr(n) != null)

then PROPAGATE(w, addr(n), addr(n), S1)

return false

Figure 4: one-level flow demand driven algorithm

6. Evaluation of one-level flow

demand-driven alias analysis

In this section, we compare the

scalability and precision of the original

demand driven alias analysis given in [7] with

our one-level flow demand driven alias

analysis.

Data shown in table 7 give the

percentage of the finished analysis in all the

analysis, when K increases from 100 to 5000.

The columns marked by “DDA” show the data

for original demand driven algorithm, while

those marked by “Olf DDA” show the data for

our one-level flow demand driven algorithm.

We can see that even when K is very

small (e.g. 100), one-level flow DDA can

already finish about half of all the analysis for

all the cases, which DDA cannot achieve when

K is extended to 5000 for some cases.

Although DDA in theory should have the

same precision as Andersen’s algorithm, it

cannot give such precise results in reality,

where reasonable compile time is needed.

Table 8 shows the data about the percentage of

analysis which give “not aliased” results. It is

easy to understand that the higher percentage,

the more precise. We can see that for most

cases, one-level flow DDA can give much

more precise results than just DDA alone.

K = 100 K = 1000 K = 5000Test case

DDA Olf DDA DDA Olf DDA DDA Olf DDA

Swim 21% 54% 21% 67% 36% 100%

Mgrid 29% 58% 32% 92% 76% 100%

Equake 23% 44% 31% 58% 38% 66%

Art 11% 41% 42% 77% 79% 100%

Table 7: percentage of analysis finished

K = 100 K = 1000 K = 5000Test case

DDA Olf DDA DDA Olf DDA DDA Olf DDA

Swim 21% 53% 21% 66% 35% 99%

Mgrid 27% 54% 31% 88% 77% 97%

Equake 19% 22% 20% 27% 20% 30%

Art 3% 10% 13% 31% 35% 54%

Table8: percentage of not-aliased results

PROPAGATE (w, n, s, c)

if (<s, c>  reach(n))

then reach(n)  reach(n) ∪ { <s, c> }

 w w∪ {<n, s, c>}

UNION (g1, g2)

g0 union(g1, g2)

for each m in g0

for each e in out_edges(m)

delete e

 if (target(e)  g0)

 then generate edge(val_holder(g0), target(e))

for each e in in_edges(m)

 delete e

 if (source(e)  g0)

 then generate edge(source(e), val_holder(g0))

Figure 4: one-level flow demand driven algorithm

(continue)

7. Conclusions and Future work

We implemented the demand-driven alias

analysis presented in [7]. After evaluating both

precision and scalability, we found that it is able to

give good precision for C programs, but still has

scalability issue when used in a product compiler.

To improve the scalability of the algorithm, we

developed a one-level flow demand driven

algorithm. We showed that the new algorithm

gives much more precise results for a reasonable

compile time and have better scalability.

Our future work will be to extend the current

implementation and try to use it in inter-procedural

analysis.

Acknowledgements

The authors would like to thank Sun Chan for

his encouragement, support and guidance. We also

thank Shin Ming Liu and Shuxin Yang for their

valuable advices on many complex problems in

alias analysis work.

References

[1] Steenguaard, Points-to analysis in almost linear

time, Principles of Programming Languages, 1995.

[2] Lars Ole Andersen, Program analysis and

specialization for the C Programming Language,

PhD thesis, 1994.

[3] Manuvir Das, Unification-based pointer

analysis with directional assignments,

Programming Language Design and

Implementation, 2000.

[4] Manuel Fahndrich, Jeffrey S. Foster, Zhendong

Su, Alexander Aiken, Partial online cycle

elimination in inclusion constraint graphs,

Programming Language Design and

Implementation, 1998.

[5] Atanas Rountev, Satish Chandra, Off-line

variable substituion for scaling points-to analysis,

Programming Language Design and

Implementation, 2000.

[6] Heintz and Tardieu, Demand driven pointer

analysis, Programming Language Design and

Implementation, 2001.

[7] Xin Zheng and Rugina, Demand driven Alias

analysis for C, Principles of Programming

Languages, 2008.

[8] Aiken, Introduction to set constraint-Based

program analysis, Science of Computer

Programming 1999.

[9] Chris, LLVM: An Infrastructure for multistage

optimization, Master thesis 2002.

