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Abstract

In this paper, an implementation of a 

demand-driven alias analysis [7] in Open64 is 

presented. In the algorithm, a program expression 

graph is constructed based on all the expressions 

and assignments in the program, and the memory 

alias problem is formulated as a CFL-reachability

problem. To deal with field accesses of structs 

which are common in multi-media applications, a 

field-sensitive extension of the original algorithm 

is also implemented. Currently, the field-sensitivity 

assumes ansi-compliant programs.

By evaluating the implementation using 

some spec2000 programs, we found that the 

scalability of the original algorithm is not able to

give enough precision in a reasonable compile 

time. To improve the scalability, a new one-level 

flow demand driven algorithm is developed, in 

which the hierarchical state machine is simplified 

by making machine M transitive while still 

keeping machine V non-transitive. The algorithm 

can achieve the same precision as Das’s algorithm

[3], but uses a demand driven approach.

Although the new one-level flow algorithm 

lost some of the precision for making machine M

transitive, it can finish analysis of more queries for 

a given reasonable compile time and give more 

definite alias results. In other words, it can give 

better precision than the original algorithm and is 

more practical for product compiler. From 

experiment results, we can see that the algorithm 

can finish about half of the queries in a short

compile time, and give much more “not aliased” 

results than the original algorithm.

1. Introduction

The set-union based alias classification [1] in 

Open64 has been used for many years, and played 

an important role in memory disambiguation as 

well as SSA based IR building in the global 

optimizer. The precision of alias analysis directly 

determine the effect of all the optimizations based 

on it, such as partial redundancy, instruction 

scheduling, etc. Since then more program analysis

techniques have been developed, such as software 

security static check, data race check for 

multi-threaded application. The effectiveness of 

these analysis techniques all heavily rely on the 

precision of alias analysis.

Set-inclusion based point-to analysis

algorithm was developed by Andersen in 1994[2], 

known for its better precision with O(N3)

complexity. This approach has been used by many 

modern compilers to improve the precision of their 

alias analysis. At the same time, plenty of new 

ideas have been developed and published to 

improve the scalability of the set-inclusion based 

algorithm.

These new methods tried to solve the 

scalability issue from different aspects, and can be 

summarized into the following three kinds:

1) Partial set-inclusion approach: Das 

presented a low cost algorithm which lies between 

Steenguaard’s algorithm and Andersen’s algorithm

[3]. The algorithm uses a restricted form of 

subtyping to avoid unification of symbols at the 

top levels of pointer chains in the points-to graph, 

while using unification elsewhere in the graph.

2) Constraint graph simplification approach: 

Manuel showed that online elimination of cyclic 

constraints can make implementation more 



scalable [4]. Similarly, Atanas Rountev developed 

an offline variable substitution algorithm which 

reduced the cost of Andersen’s points-to analysis 

substantially [5].

3) Demand-driven approach: Some

researchers noticed that some of the efforts spend 

in points-to or alias analysis are not effective, and 

developed demand-driven approaches to do

points-to analysis or alias analysis just on demand. 

For example, Heintz and Tardieu redesigned 

Andersen’s deduction rules by adding conditions 

to the rules, so that only necessary analysis is 

derived for querying [6]. Xin Zheng and Rugina 

presented a demand-driven alias analysis in 2008

[7]. In their algorithm, the computation of alias 

queries was formulated as CFL(context free 

language)-reachability over graph representation 

of assignments and pointer dereference relations, 

and they claimed that the demand-driven alias 

analysis will do less work than demand-driven 

points-to analysis.

In this paper, we try to enhance the alias 

analysis of Open64 by incorporating a 

demand-driven alias analysis which is based on

Andersen’s set-inclusion based algorithm. To 

further improve the scalability, we simplified the 

hierarchical state machine and developed a 

one-level flow demand-driven algorithm.

The reason we choose a demand driven 

algorithm is in three folds: 1) it need not calculate 

all the alias relationship at a time, but do necessary 

analysis on demand; 2) It needs less memory space

since it need not save the alias data for the whole 

program, some of which may not be used at all. 3) 

In case only partial information is available, 

demand driven algorithm can recover the needed 

info naturally. Currently, the implementation is 

used in intra-procedural analysis, and we hope to 

extend and incorporate it into inter-procedural 

analysis in the future.

2. Demand-driven alias analysis via 

CFL_Reachability

In this section, we give a brief introduction of 

how the memory alias problem can be formalized 

into a CFL-Reachability problem [7].

The C-like program which manipulates

pointers can be represented by a Program 

Expression Graph (PEG). The PEG is a graph 

representation of all expressions and assignments 

(both explicitly and implicitly) in the program. 

The nodes of the graph represent program 

expressions (including symbols) and the edges are 

of two kinds: 

i) Dereference edges ( D ): for each dereference 

*e, there is a D -edge from e to *e, and at the 

same time, there is a D -edge from *e to e.

ii) Assignment edges ( A ): for each assignment 

e1 = e2, there is a A -edge from e2 to e1, and 

at the same time, an A -edge from e1 to e2.

Unlike traditional alias analysis algorithm, two 

kinds of aliases are defined here:

i) Memory aliases: two dereference expressions 

are memory aliased if they might access the 

same memory location, i.e. their addresses are 

value aliased.

ii) Value aliases: two expressions are value 

aliased if they might evaluate to the same 

pointer value.

The may-alias problem can be formulated with a 

context-free grammar shown as the following. 

EBNF notation is used to represent the grammar, 

where “?” indicates an optional term, “*” is the 

Kleene star operator. Symbol D , D , A , A

are terminals and denote D -edge, D -edge, 

A -edge and A -edge separately. F and F  are 

non-terminals, denoting value flows.



Memory aliases: VDDM ::

Value aliases: FMFV ?::
Flows of values: *?)(:: AMF  ,

*)?(:: AMF 

In the above grammar, VDDM ::  means 

two memory accesses *e1, *e2 are aliased, if the 

path from *e1 to *e2 consists of a D -edge from 

*e1 to e1, a value alias edge V(e1, e2), and a 

D -edge from e2 to *e2. FMFV ?::  means 

two expressions e1 and e2 are value aliased if there 

exist two expressions e1’ and e2’ which are 

memory aliased, i.e. M(e1’, e2’), and whose values 

flow into e1 and e2 respectively, i.e. F(e1’, e1) and 

F(e2’, e2).

*?)(:: AMF  and *)?(:: AMF   mean 

that flows of values are due to sequences of 

assignments and memory aliases. If we eliminate 

non-terminals, F and F , we can get:

Memory aliases: VDDM ::

Value aliases: *?)?(*)?(:: AMMAMV 

Thus the memory alias relation and value 

alias relation can be represented by hierarchical 

state machines. In figure 1, machine M recognizes 

memory aliases, machine V recognizes value 

aliases.

3. Constraint generation and PEG building

Program analysis using constraints is usually 

divided into two parts: constraint generation and 

constraint resolution. Constraint generation 

produces constraints from a program text, gives a 

declarative specification of the desired information 

about the program. According to [8], the soundness 

of analysis can be proven solely on the basis of the 

constraints generated. So the constraint generation 

is very critical for both the correctness and 

precision of set constraints based alias analysis.

As we have mentioned in section 2, in the 

demand-driven algorithm discussed in this paper, 

program expression graph (PEG) instead of the 

constraint graph is used to represent program info, 

where the both the assignment edges and

dereference edges should be added into PEG. Table 

1 shows the basic rules of PEG building for 

intra-procedural analysis for C language.

In table 1, const means constant, var means 

variable, x, y, f, r represents expressions (including 

variables, used as operand, result, formal, 

actual, …), n(e) represents the node in PEG 

representing expression e. We have two special 

nodes in PEG, n_g_ptr, and n_g_obj, representing 

global pointer and global object separately and 

n_g_ptr always point to n_g_obj.

Constraints built from these rules will have 

much redundancy, since we are not able to identify 

pointer from the type system of WHIRL. To avoid 

redundant constraint generation, we apply some 

tricks to recognize pointer calculation which are 

already used in current alias analysis in Open64. 

For example, 1) Results of operations like SQRT, 

MPY, EQ … can never be value of pointer. 2) If 

the result type of an operation is pointer type, the 

result must be value of a pointer. These features 

Figure 1: hierarchical state machine

(b) Machine V

(a) Machine M



can be propagated along WHIRL tree, so as to 

avoid more redundant constraints to be generated.

CFL formulation of alias analysis can be 

extended to be field-sensitive by the following 

grammar, where fi denotes “field edge”. The field 

edge fi is an edge in PEG from the node 

representing the address of a structure to the node 

representing the address of field i in the structure.

Memory aliases:   VDDM ::

Value aliases:   ?||:: MVffVFFV ii

Flows of values:    *?)(:: AMF 

*)?(:: AMF 

The grammar reflects that two field accesses 

are aliased if and only if they access the same field 

(i.e. the structure type and the field id should be 

the same) and their bases are value aliased. But in 

reality, the grammar cannot directly apply to 

ansi-incompliant C programs, where the type 

casting between pointers of different structure 

types may make the analysis failed. A feasible way 

is to apply the similar method presented in [9], i.e. 

to check whether type-casting operation appears 

and collapses all the related field access nodes into 

one.

At present, we assume our applications are 

ansi-compliant and develop the constraint 

generation rules for field access, shown the table 2.

Besides F-edge, A-edge is also added between 

structure address and its field address, which is 

used to reflect the fact that fields always alias with 

the whole structure.

Grammar PEG node PEG A-edge PEG D-edge

Const n(const) = n_g_ptr

var :: global n(var), n(&var) n(var)  n_g_ptr

n(&var)  n_g_ptr

n(var)  n(&var)

var :: formal n(var) n(var)  n_g_ptr

var :: Reg/Auto n(var)

&x n(x), n(&x) n(x)  n(&x)

*x n(x), n(*x) n(*x)  n(x)

x = y: n(x), n(y) n(x) n(y)

p++/ p-- n(p)

x = op(y 1 …y n) n(x), n(y1), …, n(yn) n(x)  n(yi), i = 1 … n

x = allocate(y) n(x),  n(allocate),

n(&(allocate))

n(x)  n(&(allocate)) n(allocate) 

n(&(allocate))

fun(f1 … fn)  (r1 … 

rm) S*

n(fi), i = 1 … n n(fi)  n_g_ptr,

i = 1 … n

x1 … xm =

p(y1 … yn),

assume call-by-

value rule here

n(xi), i = 1 … m

n(yi), i = 1 … n

n(*yi), i = 1 … n

n(xi)  n_g_ptr,

i = 1 … m

n(*yi)  n_g_ptr,

i = 1 … n

n(*yi)  n(yi)

i = 1 … n

Table1: constraint generation and PEG building rules for C grammar



Grammar PEG node PEG F-edge PEG A-edge PEG D-edge

x.f n(x), n(&x), 

n( &x+ofst(fi) ),

n( *(&x+ofst(fi)) ),

n(&x+ofst(fi)) 

n(&x)

n(&x+ofst(fi)) 

n(&x)

n (x)  n(&x)

n(&x+ofst(fi)) 

n(*(&x+ofst(fi)))

xfi n(x),

n(x+ofst(fi))

n( *(x+ofst(fi)) )

n(x+ofst(fi)) 

 n(x)

n(x+ofst(fi)) 

 n(x)

N(x+ofst(fi)) 

n(*(x+ofst(fi)))

Table2: constraint generation and PEG building rules for struct field

4. Evaluation of demand-driven alias analysis

The demand-driven alias analysis (DDA)

implemented in this paper works on WHIRL, and 

is applied in the same phase as alias classification

(AC) in the global optimizer. By keeping the 

expression id in the POINTS_TO of each memory 

operation, it can help memory disambiguation in 

the same way as alias classification.

Compared the AC, the DDA has three 

advantages: 1) It is based on set inclusion 

algorithm; 2) The global variable accesses are not 

collapsed; 3) It is field-sensitive. However, DDA 

has no linear complexity and it has to give up 

some of its precision to avoid too much graph 

traverse time.

Compared to flow free alias analysis (FFA) 

and flow sensitive analysis (FSA), the advantage 

of DDA is that it keeps track of the value flow of 

the whole program (or the whole procedure unit, in 

case of intra-procedural analysis). The 

disadvantage of DDA is that it can only supply 

MAY alias info, but no MUST alias info, while the 

POINTS_TO (The POINTS_TO structure in 

Open64) analysis can give definite result, e.g. 

whether the two memory operations access exactly 

the same bytes/bits.

In this section, we will evaluate both the 

precision and the scalability of DDA. 

4.1 Precision evaluation

The test cases shown in table 3 include a 

typical test case to compare the analysis precision 

between set-union and set-inclusion based alias 

analysis algorithms and some typical cases from 

multi-media applications.

The analysis results of DDA, AC,

AC+FFA+FSA, and DDA+FFA+FSA are shown in 

table 4. In the table, we use x~{y1, …. yn} to 

represent that x alias with y1, …, yn. The analysis 

results shown for DDA are got with FFA and FSA 

turned off. We can see from the results that:

i) For case (1), since DDA is set-inclusion based, 

it can achieve better precision than AC. Since 

current DDA is flow-insensitive, it is not as 

precise as FSA. 

ii) For case (2), since DDA can track value flow 

of the whole procedure, it is able to 

disambiguate *p from *q and give better result 

than FSA, which can only track part of the 

value flow in the program.

iii) For case (3), since DDA is field sensitive, it 

can disambiguate accesses to different fields 

when ansi-compliant is assumed. In this case 

FFA/FSA failed due to loss of high level struct 

type info in the array.

iv) Since DDA is more precise than AC, we can 

replace AC with DDA without loss of 

precision.

4.2 Scalability evaluation

In this section, we evaluate the scalability of 

DDA using some programs from spec2000. All the 

experiments are carried out with AC, FFA and FSA 

turned off. Data in table 5 illustrate the program 

features and the classification of alias queries 

generated during Open64 compile process.



In table 5, column 2 ~ 5 show the number of 

vertices and edges in the program expression 

graphs, both accumulated count and maximum 

count are given. Column 6 shows the total number 

of alias queries from both WOPT phase and CG 

phase. In our implementation, caching is used to 

save the alias analysis result after alias analysis for 

each alias query. Column 7 shows the number of 

queries which are satisfied by checking cached 

results. Column 8 shows number of queries which 

are satisfied by quick analysis, for example, 

disambiguation of pseudo registers or local 

variables which are not address taken. Column 9

shows the number of queries which need demand 

driven analysis.

From table 5, we can see that: 1) The query 

count is large in Open64; 2) Caching of analysis 

results is very important. 3) Quick disambiguation 

is very useful. 4) The part of queries which need 

deep analysis is small, below 10% for all the cases. 

But though the number of queries needing deep 

analysis is small, their results will be cached and 

used more by later queries. So the precise analysis 

of these queries is still important.

To avoid unlimited compile time for large 

programs, a K-limit approach is used, in which a 

threshold K is used to control the exploration time. 

The K represents the upper limit of iteration count 

of the loop in the work-list based algorithm. If the 

iteration count reaches K, conservative result will 

be returned.

Table 6 gives the percentage of analysis 

which is finished in all the demand driven analysis, 

when K increases from 100 to 10000. We can see 

that: When K is below 1000, most of the 

explorations cannot finish. As K increases, more 

analysis can give definite result. However, most 

queries cannot get precise result in a reasonable 

compile time, so the current implementation 

doesn’t have good scalability. 

We believe it may be improved in following 

ways: 1) Simplify constraint graph as much as 

possible. 2) Develop more rules which can help do 

quick analysis. 3) Select simpler underlying

algorithm between set-inclusion and set-union, 

which will be given in the next section.

Test case (1) Test case (2) Test case (3)

int foo () 

{

int **p, **q;

int *s1, *s2, *s3;

  p = &s1;

  p = &s2;

  q = &s3;

q = p;

  *p = (int*) malloc(100);

  *q = (int*) malloc(100);

  return *s1 + *s2 + *s3;

}

int a[100]，b[100];

void foo() {

int i;

int *p, *q;

  p = &a[0];

  q = &b[10];

  for (i=0;i<100;i++) {

  *p = *q;

   p ++;

   q++;

  }

}

typedef struct {

  unsigned int bits_left;

  unsigned int buffer_size;

} bitfile;

typedef struct {

  char is_leaf;

  char data[4];

} hcb_bin_quad;

hcb_bin_quad hcb[10];

void foo (bitfile *ld, int cb, int n, int b){

  for (int i=0; i<n; i++) {

    ld->bits_left += hcb[i].data[b];

  }

}

Table 3: typical test cases for alias analysis precision evaluation



Test case Memory 

operation

DDA AC AC +

FFA + FSA

DDA+

FFA + FSA

Case (1) 1 S1

2 s2

3 s3

4 *p

5 *q

6 *s3

7 *s1

8 *s2

4~{1,2}

5~{1,2,3,4}

7~{6}

8~{6,7}

4~{1,2,3}

5~{1,2,3,4}

7~{6}

8~{6,7}

4~{2}

5~{2}

7~{6}

8~{6,7}

4~{2}

5~{2}

7~{6}

8~{6,7}

Case (2) 1 global_obj

2 *p

3 *q

2~{1}

3~{1}

2~{1}

3~{1,2}

2~{1, }

3~{1,2}

2~{1}

3~{1}

Case (3) 1 global_obj

2 ld->bits_left

3 hcb[i].data[b]

2~{1}

3~{1}

2~{1}

3~{1,2}

2~{1}

3~{1,2}

2~{1}

3~{1}

Table4: alias analysis results comparison

Summary of PEGs By analysis count

node count A-edge count

Test 

case

Total Max total max

Query 

count

By 

cache quick 

analysis

DDA 

analysis

Swim 391 119 568 208 23081 75% 18% 7%

Mgrid 712 132 1019 247 62410 61% 36% 3%

Equake 1899 280 1761 362 98668 45% 52% 3%

Art 1749 95 1643 122 17573 27% 65% 8%

Table5: program features and alias queries classification

Test case K = 100 K = 1000 K = 5000 K = 10000

Swim 21% 21% 36% 100%

Mgrid 29% 32% 76% 100%

Equake 23% 31% 38% 45%

Art 11% 42% 79% 100%

Table6: percentage of queries finished for given K-limit



5. One-level flow demand driven analysis

In the original state machine, the machine M

is not transitive. To get better scalability, we now 

make M transitive, so the four states in machine V

can be changed into two, shown in figure 2. 

Based on this state machine, we can 

developed a new demand driven alias analysis and 

achieve the same precision as Das’s one-level flow

algorithm. It can be understood in this way: if *e1 

can reach *e2 by M(*e1, *e2), and *e2 can reach 

*e3 by M(*e2, *e3), then *e1 will also reach *e3 

by continuously following M(*e1, *e2) and M(*e2, 

*e3). That means the expressions connected by 

memory alias relationship will all carry the same 

value, so as to point to the same object. 

Thus we can union these expressions into 

one “value alias group” (i.e. these expressions 

have the same value/content, though may access 

different locations), then merge dereferences of 

these expressions into one PEG node (i.e. same 

value/content and same location). We use a special

node as representative of the value alias group,

which we call “value holder”, and then the value 

flows between the nodes inside the “value alias 

group” need not to be checked in future analysis, 

while the value flows outside the group will only 

be carried on the “value holder”. That means the 

assignment edges inside the group will be deleted 

while the edges between nodes inside the group 

and those outside the group will be moved to lie 

between the “value holder” and those outside 

nodes. Since both the node count and edge count 

in PEG are reduced, later analysis will be greatly 

simplified.

Figure 3 gives an example of online PEG 

simplification for the case (1) given in table 3, 

where solid lines represent A-edges and dash lines 

represent D-edges. The nodes surrounded by the 

callout form a value alias group. We can see that in 

the new algorithm, value alias relationship is still 

exploited by reachability analysis, but when 

memory alias is found, we will perform PEG 

(program expression graph) simplification of the 

related nodes. So the algorithm is demand driven 

in two folds: 1) demand driven reachability 

analysis, 2) demand driven PEG simplification. 

Compared with SSA, the “value holder” here 

corresponds to the phi node in SSA. The phi node 

factors the value flows in and out of control flow 

structure, while “value holder” factors the value 

flows in and out of “value alias group”.

Figure 4 shows the detailed algorithm 

description, where val_alias_g(n) means to find 

the value alias group for node n, val_holder(g) 

means to find the value holder node of the value 

alias group g, val_holder(n) means to find the 

value holder node of the value alias group that 

include node n, and peg_node(e) means to find the 

corresponding node in PEG for expression e.

A A

S3S1
A

MM

Figure 2: one-level flow hierarchical state machine

(a) Machine M

(b) Machine V
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Figure 3: online PEG simplification

MAYALIAS (e1 : Expr, e2 : Expr)

/* initialize worklist */

w { <addr(e1), addr(e1), S1> }

while (w is not empty)

remove <n, s, c> from w

/* check if the destination has been reached */

if (peg_node(addr(e1)) == peg_node(addr(e2)))

then return true

else if (((n == addr(e1)) ^ (s == addr(e2))) || 

((n == addr(e2)) ^ (s == addr(e1))))

then return true

/* propagate information upward */

ds deref(s)

dn  deref(n)

if ( (dn != null) ^ (ds!= null) ^ (dn != ds) ^

(val_alias_g (dn) != val_alias_g(ds)))

then g UNION (val_alias_g(dn), val_alias_g(ds))

    merge all the derefs of nodes in g

/* propagate reachability through value flows */

vn val_holder(n)

vs val_holder(s)

switch (c)

case S1 :

  for each m in assign_from(vn) :

PROPAGATE(w, m, vs, S1)

for each m in assign_to(fn) :

PROPAGATE(w, m, vs, S3)

case S3 :

for each m in assign_to(vn) :

    PROPAGATE(w, m, vs, S3)

/* propagate information downward */

if (n == val_holder(n))

then for each m in val_alias_g(n)

if (addr(m) != null)

   then PROPAGATE(w, addr(m), addr(m), S1)

else if (addr(n) != null)

then PROPAGATE(w, addr(n), addr(n), S1)

return false

Figure 4: one-level flow demand driven algorithm



6. Evaluation of one-level flow

demand-driven alias analysis

In this section, we compare the 

scalability and precision of the original 

demand driven alias analysis given in [7] with 

our one-level flow demand driven alias 

analysis.

Data shown in table 7 give the 

percentage of the finished analysis in all the 

analysis, when K increases from 100 to 5000. 

The columns marked by “DDA” show the data 

for original demand driven algorithm, while 

those marked by “Olf DDA” show the data for 

our one-level flow demand driven algorithm. 

We can see that even when K is very 

small (e.g. 100), one-level flow DDA can 

already finish about half of all the analysis for 

all the cases, which DDA cannot achieve when 

K is extended to 5000 for some cases.

Although DDA in theory should have the 

same precision as Andersen’s algorithm, it 

cannot give such precise results in reality, 

where reasonable compile time is needed. 

Table 8 shows the data about the percentage of 

analysis which give “not aliased” results. It is 

easy to understand that the higher percentage, 

the more precise. We can see that for most 

cases, one-level flow DDA can give much 

more precise results than just DDA alone.

K = 100 K = 1000 K = 5000Test case

DDA Olf DDA DDA Olf DDA DDA Olf DDA

Swim 21% 54% 21% 67% 36% 100%

Mgrid 29% 58% 32% 92% 76% 100%

Equake 23% 44% 31% 58% 38% 66%

Art 11% 41% 42% 77% 79% 100%

Table 7: percentage of analysis finished

K = 100 K = 1000 K = 5000Test case

DDA Olf DDA DDA Olf DDA DDA Olf DDA

Swim 21% 53% 21% 66% 35% 99%

Mgrid 27% 54% 31% 88% 77% 97%

Equake 19% 22% 20% 27% 20% 30%

Art 3% 10% 13% 31% 35% 54%

Table8: percentage of not-aliased results

PROPAGATE (w, n, s, c)

if ( <s, c>  reach(n))

then reach(n)  reach(n) ∪ { <s, c> }

  w w∪ {<n, s, c>}

UNION (g1, g2)

g0 union(g1, g2)

for each m in g0

for each e in out_edges(m)

delete e

  if (target(e)  g0)

    then generate edge(val_holder(g0), target(e))

for each e in in_edges(m)

  delete e

   if (source(e)  g0)

    then generate edge(source(e), val_holder(g0))

Figure 4: one-level flow demand driven algorithm

(continue)



7. Conclusions and Future work

We implemented the demand-driven alias 

analysis presented in [7]. After evaluating both 

precision and scalability, we found that it is able to 

give good precision for C programs, but still has 

scalability issue when used in a product compiler.

To improve the scalability of the algorithm, we 

developed a one-level flow demand driven 

algorithm. We showed that the new algorithm 

gives much more precise results for a reasonable 

compile time and have better scalability.

Our future work will be to extend the current 

implementation and try to use it in inter-procedural 

analysis.
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